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Equilibrium shapes and stability of annular fluid menisci held together by surface 
tension are analysed by applying asymptotic and computer-aided techniques from 
bifurcation theory. The shapes and locations of the menisci are governed by the 
Young-Laplace equation. These shapes are grouped together into families of like 
symmetry that branch from the basic family of annular shapes a t  specific values of 
the aspect ratio, a. Multiple equilibrium shapes exist over certain values of a. The 
inner, outer or both the inner and outer interfaces may possess either a cylindrical 
or sinusoidal equilibrium shape. Changes in applied pressure, fluid volume, or 
gravitational Bond number break families of the same symmetry which now develop 
limit points. Numerical calculations rely on a finite-element representation of the 
interfaces and the results compare very well with asymptotic analysis which is valid 
for small deformations. The results are important for the blow moulding process and 
are invaluable in understanding its dynamics. These dynamics are expected to be 
considerably different from the dynamics of a liquid jet first analysed by Rayleigh. 

1. Introduction 
Deformation of fluid menisci plays an important role in many commercial 

processes such as coating and film flows employed in various heat and mass transfer 
operations. Coating of solids is commonly encountered in the manufacture of 
photographic films. I n  addition, blow moulding and thermoforming constitute two 
important polymer processing operations in which a softened polymeric membrane 
is formed into a thin-walled plastic container or structural part. The blow moulding 
process involves the inflation of a hollow cylindrical tube within a mould cavity that 
possesses the desired shape of the finished product. In  a typical thermoforming 
process a heated plastic sheet is clamped over a mould and forced by external 
pressure to deform and contact the mould surface. In  both operations the shape and 
stability of the fluid meniscus plays an important role in determining the time 
evolution of the fret. surface of the fluid and the quality of the finished product. The 
final wall thickness distribution of either a blow moulded or thermoformed part, the 
optimal use of material, the evaluation of design concepts, and the comparison of 
process alternatives necessitates the development of a realistic dynamic simulation 
of the inflation or deformation process. Prior to this undertaking however. the 
dependence of static equilibrium shapes and stability of the annular menisci on 
multiple parameters must be fully understood. Furthermore, the interest in annular 
menisci has been recently motivated by the production of lithium shields to be used 
in certain pulsed fusion reactors. In  particular, Esser, Paul & Abdel-Khalik (1981) 
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derived the dispersion relation to predict the range of disturbance frequencies lcading 
to instability. In addition, Lee & Wang (1986) have analysed, and Hoffman, 
Takahashi & Monson (1980) have performed experiments to determine, the length 
required for closure of a vertical annular water jet due to the action of surface tension 
forces. 

The equilibrium shape of an interface separating two immiscible fluids is governed 
by the much-studied equation of Young (1805) and Laplace (1805) which equates thc 
capillary force acting on the interface to thc pressure force exerted by the bulk fluid 
on either side. At equilibrium thesc forces are conservative and the equilibrium shape 
can be derived by making thc total potential energy stationary with respect to small 
changes in the shape. Under this condition the shape is stable if the stationary point 
is a local minimum with rcspect to all small perturbations, and unstable if the 
stationary point is a local maximum. Alternatively, interfacial stability can be 
determined by solution of ail eigenvalue problem arising from small-amplitude 
analysis of the Young-Laplace equation. 

Ideas and methodology from the field of bifurcation theory have been applied with 
success to interfacial problems controlled by single or multiple parameters ; see 
Ungar & Brown (1982) and references therein. The asymptotic methods uscd here are 
based on the perturbation procedures described in 100s & Joseph (1980) and 
Matkowsky 8: Reiss (1977). and they are designed to account for the splitting and 
shifting of bifurcation points as secondary parameters are varied. The numerical 
methods combine finite-element representation (Strang & Fix 1973) of the meniscus 
shape with computer-implemented techniques for tracking shape families as 
explained in Keller (1977) and Abbott (1978). Within this framework, the stability 
of the menisci to steady bifurcating solutions can be directly inferred from the 
connectivity of the shape families. Thus, any explicit eigenvalue calculations, used 
elsewhere (Brown & Scriven 1980), can be circumvented. 

Of special relevance for the present work is Rayleigh’s (1879, 1892) analysis (see 
also Chandrasekhar 1961) on the stability of a cylindrical jet. As Plateau (1873) first 
showed, this instability is caused by surface tension forces which make the infinite 
cylinder at equilibrium unstable with respect to separated droplets which have less 
surface area than the original cylinder. It is now well known that a liquid cylinder 
is neutrally stable to a shape disturbance that is infinitesimal in amplitude, 
sinusoidal in shape, and of wavelength equal to the circumference of the cylinder. 
Furthermore, the cylindrical fluid column is unstable to disturbances of even greater 
wavelength and the evolution in time of unstable shapes depends on the mode of 
maximum instability. 

The existence of neutrally stable shapes indicates that  two or more shape families 
intersect each other at the so-called critical or bifurcation points. In general, the new 
shape family may be stable or unstable depending on the potential energy a t  
equilibrium, and bifurcation theory provides a useful tool to systematize the 
analysis. Mathematically stable shapes constitute possible configurations, whereas 
unstable shapes are not physically realizable, but influence the stability of nearby 
equilibrium shapes, especially when multiple parameters are involved. In  the 
cylindrical jet, all critical points correspond to subcritical bifurcations between the 
families of cylindrical interfaces and deformed static shapes. Thus, according to 
bifurcation theory, the cylindrical shape is unstable with respect to disturbances 
with wavelength larger than the first critical one. Similarly, all static shapes that 
belong to the bifurcating families are unstable. In addition, weakly nonlinear 
dynamic analysis has shown that the critical wavelength depends on the square of 
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the amplitude of the disturbance (Nayfeh 1970). In  contrast to the above, if the first 
critical point corresponds to  a transcritical bifurcation, the unperturbed shapes 
would still become unstable there, but shapes in the bifurcating family with larger 
wavelengths would be stable. Moreover, the critical wavelength would vary linearly 
with the amplitude of the disturbance. Indeed, this situation arises in the study of 
break-up of a charged drop, where neutral equilibrium is achieved when cohesive 
surface tension forces are counterbalanced by electrostatic repulsion (Tsamopoulos, 
Akylas & Brown 1985). 

One of the goals of the present analysis is to determine which of the two markedly 
different bifurcation structures is exhibited by annuluar menisci. Specifically, it will 
be shown that the captive annular mesniscus becomes unstable owing to capillary 
forces when the ratio of its height to its outer radius exceeds a certain critical value. 
The inner, outer or both interfaces of menisci that belong to bifurcating families may 
be sinusoidal. Also, the first critical point corresponds to a transcritical bifurcation, 
which is contrary to what is intuitively expected by analogy with the cylindrical jet. 
In  addition, when the pressure applied on the inner surface of the annular meniscus 
is increased, or the volume of the fluid is decreased, the annular-like shape family 
smoothly connects with the first bifurcating one and remains stable past the first 
critical point. However, when the pressure is decreased or the fluid volume increased, 
the annular-like shape family terminates prior to the first critical point. The extent 
to which stable static families exist depends also on the thickness of the meniscus and 
must be known before dynamic simulations or new experimental designs are 
undertaken. This type of analysis has not been undertaken before, although a 
quantitative study of annular liquid jets was first performed by Boussinesq 
(1869). 

Force balances at  equilibrium for the two interfaces of the meniscus are presented 
in $2. The family of cylindrical shapes along with the perturbed surfaces are derived 
in $3. These are the asymptotic solutions to the above-mentioned set of coupled 
equations when only small deformations are allowed. An extension of the bifurcating 
shape families in the nonlinear regime requires numerical simulation and this is 
carried out in $4. In  the same section, the unfolding of the bifurcations due to 
variations in pressure, fluid volume, and gravity is considered. Finally, comparison 
and discussion of the results and their implications for stability are given in $ 5 .  

2. Governing equations 
fixed at  both ends by contact with 

stationary solid surfaces situated a t  a distance 2 from each other. The liquid wets the 
two solid surfaces and forms two fixed, concentric and circular contact lines on each 
surface, the outer one having radius Fo and the inner one Fl = Fo - cfo, where cfo is the 
thickness of the contact surface. As shown in figure 1, the centres of the two contact 
surfaces lie on the same vertical axis. In addition, pressure acts uniformly on the 
inner and outer liquid/air interfaces and gravity acts downwards. The inner and 
outer interfaces of the liquid meniscus are given by RI = &(Z, 8) and &, = Eo(Z, B ) ,  
respectively in the Monge cylindrical representation. The force balance for each 
interface is given by a generalization of the Young-Laplace equation to include the 
gravitational potential. Thus 

Consider a liquid annular meniscus of volume 

(PI-PF)+Bz+2X1 = 0, 

(PF-Po)-B~+2X0 = 0, 
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FIGURE I ,  Schematic representation of the annular meniscus 

where Z;,F,o = FopI, F,o/cr deriotc the dimensionless pressures of the inner gas phase, 
the liquid phase, and the outer gas phase respectively, B = VO”Op glcr is the 
gravitational Bond number, z = Z/L is the dimensionless vertical distance and 
XI,” = 2 1 , 0 F 0  denotes the mean curvature of the inner and outer surfaces. 
rc~q)ec%ively. In these definitions cr is thc surface tension for tither interface, A p  3 

p F - p o  is the density difference between the liquid and the surrounding medium, and 
g is the accelcration due to grav~ty.  Thc expression for the mean curvature 2-T writtcn 
in terms of any surface with radial rcpresrntation F(z .  0) is given by 

- 
where a = FOIL is the aspect ratio of the undeformed annulus and the subscripts z 
and 8 denote partial differcntiation with respect to that coordinate. It should be 
noted that the corresponding expressions given by Brown & Scriven (1980) and 
Ungar & Brown (1982) have minor typographical errors. This expression reduces to 
the required forms for the inner and outer interfaces by substituting R,(z, 0) = 
&(Z. 8)/Po and Ro(z,  0) = &,(a, H)/Fo, respectively for F ( z ,  8 )  in (2.3). When (2.1) and 
(2.2) are derived as the Euler equations of the appropriate cnergy minimization 
problem, the reference prcssurc difference, or cquivalently here PF. arises as the 
Lagrange multiplier for constraining the liquid meniscus to have constant 
dimensionless volume V = v/(nF:)l). As a result, this final unknown is determined 
from the following constraint : 

(2.4) 

Rherc the meniscus intersects the solid surfaces three different types of boundary 
conditions are possible : the contact line is specified ; the contact angle is specified ; or 
the location of contact and the angle are related. In the present analysis it is assumed 
that the liquid wets the solid at the cdges of two concentric circles but is not allowed 
to slip. so that 

R , ( 0 , 8 ) = R 0 ( 1 , 0 ) =  1, OdOdn, (2 .5 )  

R,(O, 8 )  = R,( 1,e) = 1 - t .  0 d 0 d n, (2.6) 
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when: t = &,/Po is the dimensionless thickness of the original meniscus. Finally, all 
shapes must be periodic in the azimuthal direction with periodicity 27c: 

Ro(z ,  0) = R,k, 2n), O b z < l ,  (2.7) 

(2.8) 

R,(z, 0) = R,(z. Zn), O G z 6 1 ,  (2.9) 

(2. 10) 

R,,,(z,O) = R,,,(z, 2n) = 0, 

R,,,(z, 0) = R,,,(x. 2 ~ )  = 0. 

0 d z < 1, 

0 < z < 1. 

3. Perturbation solutions about the annular meniscus 
When no external forces are present the meniscus can assume the shape ofa  perfect 

cylindrical annulus for all aspect ratios and thicknesses. Consequently, H = 0. 
V = t(2-t) and the soluhion to (2.1)-(2.10) is 

1 
Ro(z,6) = 1 ,  R,(z,O) = l - t ,  PF-Po= 1,  Pl-P F -- - 1 - t '  (3.1) 

By setting the outer pressure to zero the inner pressure is given by 

(3.2) 

where the first term on the right-hand side of (3.2) is required to balance the surface 
tension forces in order to maintain the perfect annular shape. The second term in 
(3.2) is presently zero, but in general represents the externally applied pressure that 
causes the annulus to deform. 

Following Ungar & Brown (19821, the equilibrium shapes and stability of the 
liquid meniscus subject to variations in the aspect ratio, external pressure, fluid 
volume and gravity are obtained by a double expansion of the unknowns (R,,(z, O ) ,  
R,(z, O),PF) and the parameters (a ,  AP, AV, B) .  Thus, 

c o r n  

= c c en? 
n=O m=O 

(3.3) 

where A17 = V - t ( 2 - t ) .  The first coeficient in the expansions, e. measures the 
difference between each bifurcating shape and the original annular shape, whereas 
the second variable, y ,  is used to scale the departure of a particular bifurcating 
family from its initial position when additional parameters are varied (AP,  AV, B).  As 
shown in $ 4  these parameters scalc differently with y .  The identifying exponent, 
(n, m),  gives the order of the expansion in terms of e and y .  

The asymptotic analysis if greatly expedited by the use of the symbolic 
manipulator MACSYMA (1977). The first term in each expansion is characterized by 
the exponent (0,O) and corresponds to the base solution of thc cylindrical annulus 
given by (3.1). Initially, axisymmetric disturbances are considered. Substituting 
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(3.3) into (2.1)-(2.4) yields at each order the following coupled set of linear ordinary 
differential equations : 

d2R(n3 m) 
I +P ZR(n. I m )  - p p n ,  F m) = d ( n ,  I m), (3.4) 

dz2 

[Rg, m) - (1  - t )  Rf", "'1 dz = dg, " ) ,  (3.6) 

where ,u = l/[cd0~O)(l - t ) ] ,  6 = l / o l ( O , O )  and d&;j$ are the non-homogeneous terms in 
the equations that involve lower-order terms from the expansion (3.3). At first order 
in e they are zero and at  first order in y they are given as follows: 

( 3 . 7 )  

The derivation of the non-homogcneous terms a t  higher orders is tedious but 
straightforward. However, these terms are necessary for the present analysis and 
they are given in Appendix A.  The boundary conditions (2.5)-(2.10) reduce at  each 
order to their corresponding homogeneous forms. The bifurcation points, the 
bifurcating shapes from the base family and how these shapes are affectcd by varying 
the other relevant parameters of the problem are systematically detcrmincd in the 
following sections. 

3.1. Unperturbed bifurcation 
The unperturbed shapes are obtained by setting the variations of AP, At' and B 
equal to zero. Then, according to ( 3 . 7 ) ,  dr6lp = 0 a nd the first-order problem 
composed of (3.4)-(3.6) constitutes a homogeneous and linear eigenvalue problem 
with homogeneous boundary conditions. This problem has non-trivial solutions for 
specific values of the aspect ratio a("? O )  which simultaneously define the locations of 
the bifurcation points from which the less symmetric bifurcating families emanate. 
The corresponding non-trivial solutions for the interface shapes and fluid pressure 
(R$ljo), R(l*O), 0 PPvO)) constitute the eigenvectors, which are also known as the null 
vectors of the linear differential operator defined by the left-hand side of (3.4)-(3.6). 
These solutions are of the form 

Rj120) = C c ospz+C, sin,uz+ (1 - t ) 2  Pp*O), 

RS'O) = C, cosSz+C, sin6z-PL?.O), 

(3.8) 

(3.9) 

where P(F1.O) is determined by the linearized volume constraint. The integration 
constants, Ci, are determined by the first-order boundary conditions, and they are 
non-trivial when the following characteristic equation in terms of is satisfied : 

tan ($) tan ($6) [26t3 tan ( ip)  + 2p tan ($3) -pa( 1 + 691 = 0,  (3.10) 

where 5 = 1 - t .  Obviously, this equation has three types of roots which give rise to 
three types of eigenvectors as summarized in table 1. The corresponding families of 
solutions will be called the p, 6 and pS families, and they group together shapes with 
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Shape 
family Bifurcation points 

n =  1,2.3,  ... 

28, E3 tan ( ipn)  

+ 2pn tan ($8,) 
-pn 8,2 ( 1 + [3) = 0 

n =  1.2 .3  .... 

Eigenfunctions 

1 
sin p,' ( 1 - cos (pa z ) )  - sin (pz z )  ( 1 - cos p,)] 

sin p,, 

[sin (8, z )  (1 - cos 6,) -sin 8,( 1 - cos (8, z ) ) ]  
sin 6, 

TABLE 1 .  Asymptotic results for Unperturbed bifurcation from the base solution 

perturbed inner, outer and both inner and outer interfaces, respectively. The shapes 
in both the p and 6 families are reflectively antisymmetric about the plane 
perpendicular to the axis of rotation at  z = f ;  whereas the shapes of the p6 families 
are reflectively symmetric. By increasing the thickness of the meniscus. t .  the 
bifurcation points for the p and ,US families shift to higher values of the aspect ratio ; 
whereas the S bifurcation points are unaffected. For large values of the aspect ratio, 
a. the unperturbed annular shapes are stable. The highest value of a a t  which the 
annular shapes are neutrally stable occurs owing to the bifurcation of the first pS 
family. A countable, but infinite number of new families emanate from the basic 
family as a --f 0. Each successive family exhibits a more wavy shape than the previous 
one. This is similar to Rayleigh's (1879) results for the break-up of a liquid jet. 

The evolution of the various shape families in the (a,€)-plane is determined by 
calculating the corrections to the aspect ratio around each bifurcation point, We first 
define the amplitude of the perturbations for the ,US families, thus normalizing the 
cigenvectors, as follows : 

(3.1 1)  

where the angle brackets denote the inner product between two functions f (2) and 
g(z)  given by 

( f >  9 )  = 1 f (2) g(4 dz. (3.12) 

For the ,u (6) shape family the second (first) term in (3.11) is identically zero and the 
factor + is dropped. The tangent of the angles between the different shape families 
and the base family are equal to l/a(',O). They are calculated so that the sccond-order 
inhomogeneous problem has a bounded solution. Equivalently, the null vector must 
be orthogonal to the right-hand side of (3.4)-(3.6) for (n,rn) = (2 ,0) ,  according to 
Fredholm's alternative (100s &, Joseph 1980). The values of 

a ( i , ~ )  = 0 

1 

are 

> (3.13) 
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for either the p or S family irrcspective of the meniscus thickness, and for the ,US 

where y t  = 1 +/3,", S, = 4/3i-a'030), 5, = 2a'0.0'[(3a'0~0'[+7)/31-a'0,0'], 

6, = 2a(0~0)[(3a(0,0)+7)/3 2 --a(O,O)], = tan ( ip) ,  p2 = tan (+a) 
Therefore, the p and 6 families emanate perpendicularly to the base solution as do 
Rayleigh's modes for the break-up of a liquid jet. However, the ,US family forms an 
angle that depends on the dimensionless thickness and this bifurcation is called 
transcritical. In particular, the first and subsequently all the even pS families have 
negative slopes and all the odd pS families starting with the third have positive slopes 
for thickness values of t = 0.1. However, this slope for all ,MY families except for the 
first can become positive and even infinite as the meniscus thickness increases. Since 
the first critical point always corresponds to a transcritical bifurcation, static menisci 
that belong to this branch with even smaller than critical a will be stable. 
Furthermore, the evolution of instabilities close to the first critical point, will be 
significantly different from that of a cylindrical jet and similar to the dynamics 
during break-up of a critically charged liquid drop (Tsamopoulos et al. 1985). 

In  order to characterize the p and S bifurcations i t  is necessary to calculate the 
next-order correction to the regular expansion for the aspect ratio. As previously, the 
solvability criterion for the third-order problem yields 

These expressions yield positive values for so that both ,U and S families 
bifurcate subcritically in aspect ratio. Second-order corrections to the aspect ratio 
for the pS family reveal the existence of a limit point in these families and are 
given elsewhere (A. Poslinski, Ph.D. thesis, SUNY a t  Buffalo, in preparation). 
Additionally, the second-order corrections to meniscus shape for the p family are 

L::] [ -6 sinS/D, 

where D, = 28 sin S( 1 + t3) + 4( cos S - 1). For the S family these corrections are 

[(S sin S + 2 cos S - 2 )  cos px + S sin S[3] / (D,  5) sin pz + ~- 

Rb2.O) = &[sin S ( 1  - cos Sz)  - sin Sz( 1 - cos S) ] /D ,  . (3 .17)  I 
I 

cos2 pz 

2 t  

[2p[sinp(l -ccospx)-sinp~(l -cosp)/D, 

( ' , O )  = sinSz+i c o s 2 S z - [ ( p  s inp+2  c 0 s p - 2 ) [ ~  cosSz+p sinp]/U, , (3.18) 

p sinp/D2 
FI'] p c s ,  0 )  [ 
where D, = 2p sin p( 1 + t3) + 4t3( cos p - 1 ) . 

in $4  and are graphically represented there. 
All the perturbation results agree very well with the numerical simulations given 
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3 2.  Pprturbed b$ furcation 
Changes in the externally applied pressure. the liquid volume in the meniscus and 

the gravitational acceleration modify the solution structure and are calculated by 
expanding the field variables in terms of the above-mentioned parameters. To this 
end, AP,  AV or B nil1 be identified with y in the Taylor series given by (3.3), and the 
resulting equations are of the form (3.4) -(3.6). Their solutions are regular away from 
the bifurcation points : 

t'p(2 tan (iS)-S) (tan ( ip)  sinpz+cospz- 

3 S 2  tan(;,u)-p)(tan(iS) 

KfO, 1)  

A P + O ,  [R$ , l ]  =?& ( 

pi.". 1)  t 3 S ( 2  tan ( ip)  -,u) 

1 

whcrc L), = 2St3 tan ( ip)  + 2p tan ($8) -pS( 1 + t'). (3.22) 

However, the solutions for varying AP and AV become singular near the ,US 
bifurcation points. and the solutions for varying R become singular near the p and 
S bifurcation points. Therefore. near these respwtivc points the singular behaviour 
must be resolved b j ~  rescaling the varying parameters with y ,  and by developing the 
inner solution acvording to Reiss (1977) and Matkowsky & Reiss (1977). 
Equivalently. as Ungar & Brown (1982) have shown, the series (3.3) and Fredholm's 
alternative can be used to calculate the dependence of the varying parameters on y .  
The latter technique avoids the rescaling procedure and provides directly inner 
solutions which are bounded. The development of singularities close to certain 
bifurcation points indicates that  the solution varies significantly there. Indeed, the 
emanating solution families split and develop limit points. Furthermore, even when 
the solutions remain regular. the bifurcation points themsclves shift to different 
values of the aspect ratio. Detailed analysis of all these possibilities is given in the 
following four subsections. 

3.2.1. Variation of A€' near the pS bifurcation points 
If only variatioiis in the externally applied pressure are allowed, the right- 

hand side of the first-order equations (3.4)-(3.6) become (d:o- l ' ,  dAo.l). d$'sl) = 
( - S'AP(O3 'I, 0 .0 ) .  Since the homogeneous solution to these equations, given in table 1, 
is simultaneously the null vector of the differential operator, the non-homogeneous 
solution is bounded if Fredholm's alternative is satisfied at a = a(','). i.e. 
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Equation (3.23) requires that AP(O3') = 0, making the first-order perturbed problem 
homogeneous with a general solution determined up to an amplitude, K :  

(Rio-l), R(031), 0 R(0.1)) F = K(Rjl9O),R(1,0) o , F ) .  P(1.0) (3.24) 

In order to determine K ,  the solvability criterion for the second-order problem is 

(3.25) 
invoked and yields 

K21, + Ka(O,')I, + AP'O. ' ) I  o >  = 0 

where the expressions I i  result from the evaluation of the inner product and are given 
in Appendix 13. Equation (3.25) is quadratic in K which then depends on the first 
correction to aspect ratio and the imposed external pressure 

AP = y2AP(Oj2). (3.26) 

Without loss of generality AP(o.2) = 1 corresponding to  inflation or deflation of the 
meniscus. Therefore, the imposed pressure, AP,  scales with the square of the 
peturbation parameter, y ,  and setting the distance, a(,,'), from the ,us bifurcation 
point, determines the amplitude, K ,  through (3.25). For a given pair (do,'), y )  there 
may be either two, one or no solutions for K .  Of special interest is the case of a double 
root, since it provides the loci of the limit points formed by the broken bifurcating 
families to be + ya(O9 l), where 

(3.27) 

The two different signs of A P o >  2, lead to drastically different splitting of every 
bifurcation point as shown in 94.2. I n  general, one set of limit points exists above the 
base solution and one below. Sample numerical values of the limit points are given 
in $4.2 and further details can be found elsewhere (A. Poslinski, Ph.D. thesis in 
preparation). 

3 .2 .2 .  Variation of AV near the ,u6 bifurcation points 
l ) ,  d&o,l) ,  d&O.l)) = (iAV(O9 l ) ,  0,O) Fredholm's alternative 

requires that AV(O9') = 0 . Th en the solution of the first-order problem is given by 
(3.24). The solvability criterion of the second-order problem yields the same 
quadratic equation for K except that  here I ,  = k. From the expansion (3.3), 

In a similar way, when 

A V  = V-t (2 - t )  = Y ' A V ( ~ , ~ ) .  (3.28) 

One can now set AV(o,2)  = - + 1 indicating an increase or decrease of the annular fluid 
volume. Once again, the values of a(',') that result in double roots for K are the limit 
points in the broken bifurcation families, (see also $4.3). 

3.2.3. Variation of B near the ,u or 6 bifurcation points 
When only variations in gravity arc considered the homogeneous terms in 

(3.4)-(3.6) become ( d f o , l ) , d b o , l ) , d ~ , l ) )  = ( - - I ~ ~ B ( ~ , ~ ) Z , S ~ B ( ~ , ~ )  z ,  0). The solvability 
criterion requires that B(O3') = 0, so that the solution to the first-order problem 
remains the same as in $$3.2.1 and 3.2.2. However, the second-order solution 
becomes bounded when an equation of the form (3.25) is satisfied with I ,  = 0. As 
noted by Matkowsky & Reiss (1977), a unique solution for K in the inner problem is 
unable to match all three outer solutions which exist in subcritical bifurcations for 
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Shape family Varying parameter 

(P)  Pressure 1) ~ [ Z  tan (+3-S]AP(' "/D4. 
Volume a(" 1) = -SAI."O 1)/(zI)4). 

(4 Pressure ~ ( 0 . 1 )  = [2 tan (b) -p] [3M'(O*1) 1% 
Volume a'O"' == pAVv'o.1'/2D,), 
Gravity ,(" 1) = 0, (Pa) 

where 
and 

D, = p [ 2  tan (t&)-S( 1 +[')I, 
D5 = S[ZE3 tan (&)--,LA( 1 +[')I 

TABLE 2 Coefficients for the shift of unbroken bifurcation points 

some parameter range. Consequently, this inner solution has to be dropped by 
setting 

a ( o , i )  = ~ ( 0 . 2 )  = 0 (3.29) 

The solution to the second-order problem reduces to 

(3.30) (R(O,2), R(0,2),P(092) 2 R(2,O) R(2.0) pC2,O) 
I 0 F I 0 F ) I  

where the terms on the right-hand side are given by (3.17) and (3.18). In  order to 
determine K ,  Fredholm's alternative is invoked for the third-order problem to 
yield 

(3.31) 

where I i  again result from the evaluation of the inner product and are given in 
Appendix B. According to (3.31), one, two or three values of K may correspond to 
specified values of H ( 0 , 3 )  and Without loss of generality one can set B(0,3)  = 1 
and deduce from (3.3) that variations in the gravitational Bond number should scale 
with the third power of y. Furthermore, introducing the effects of gravity splits the 
subcritical ,u and S bifurcating families into a continuous family and one with a limit 
point for specific values of the aspect ratio. Setting the discriminant of (3.31) to zero 
determines the loci of these limit points as a = a(o*0)+y2a(0,2), where 

(3.32) 

(3.33) 

for the 6 families. Both (3.32) and (3.33) yield > 0 so that the limit points arise 
a t  higher values in aspect ratio than the corresponding bifurcation points. The 
position of the single set of limit points with respect to the base solution depends now 
on the sign of the double root of K derived from (3.31). The perturbed bifurcation 
diagram is given in 94. 

3.2.4. Shifting of un,broken bifurcation points 
The regular perturbation solutions (3.19)-(3.21) remain bounded when pressure or 

volume variations are considered close to  the ,u and S bifurcation points and when 
gravity variations are considered close to the ,US bifurcation points. Thus, under 
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these variations the bifurcation points remain unbroken. but arise a t  modified values 
of a. According to Reiss (1977) this shifting of the bifurcation points is obtained by 
considering the two-variable expansion (3.3) up to order t'y'. Since the three lower- 
order problems (coyo, elyo, eoyl) have already been considered this new term can be 
calculated readily. Consequently. the bifurcation points shift from their original 
values a ( O . O )  as follows : 

= a(o,o) + E a ( l . O )  +ya'0711. (3.34) 

Table 2 lists the values of a(',') for each unbroken bifurcation point. Given that both 
1. and 6 bifurcating families are subcritical, small positive pressure increases c'ausc a 
shift to higher values of the aspect ratio. Moreover, small volume increases shift these 
families away from each other. Finally, the ,US bifurcation points are not shifted when 
gravity varies, since a(O-l) = 0. 

3.3. Xon axisymmetric bifurcations 
The possibility of bifurcations to non-axisymmetric shape families, under the 
restriction that the liquid meniscus remains vertical is examined next. Substituting 
the expansion (3.3) into the governing equations (2.1)-(2.4) yields the following set 
of linear partial differential equations at first order in E : 

(3.35) 

(3.36) 

where the coordinate system has been shifted to thc centre of the midplane between 
the two horizontal solid surfaces for convenience. The solution of this set of equations 
subject to the homogeneous boundary conditions derived from (2.5)-(2.10) is given 

Rf1>O)(x, e )  = [C, cos (p, x )  + C, sin (p3 z ) ]  cos Ice, 
R$,O)(z, 8 )  = LC, cos (/I4 x) + C, sin (/I, z ) ]  cos Ice. 

(3.38) 

(3.39) 

PP.0) = 0 (3.40) 

bY 

where k is any non-negative integer, p3 = ,u( 1 - k2); and p4 = S(1- k2)4 and C ,  are 
integration constants. A non-trivial solution is derived only when is such that 
the following characteristic equation is satisfied : 

sin (p3)  cos (p,) sin (p4) cos (p,) = 0. (3.41) 

For k = 0, equations (3.38)-(3.40) reduce to the ,u and S axisymmetric bifurcating 
families. For Ic = 1 ,  the same equations predict a uniform translation of the meniscus 
in a plane containing the z-axis. For Ic > 1, no bifurcating solutions exist, as should 
be expected by analogy with the cylindrical jet. However, it is expected that if the 
meniscus is tilted with respect to the gravitational field, stable non-axisymmetric 
shape families will indeed arise. This possibility is not explored further. 
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4. Numerical results on equilibrium shapes and stability 
Since the non-axisymmetric analysis in $3.3 revealed that, no such shape families 

emanate, the numerical simulation is focused on determining axisymmetric families 
for large deformations. A finite-element, algorithm is used to calculate equilibrium 
shapes as well as bifurcation and limit points. The inner and outer liquid/gas 
interfaces are represented in terms of Lagrangc quadratic basis functions { @ ( z ) }  : 

N 2 N  

R,(z) = c X i $ i ( Z ) .  R,(z) = c X i $ i ( Z ) :  (4.1) 
i=l i = N + l  

where the coefficients {x i }  are determined so that the weighted equations (2.1) and 
(2.2) according to Galerkin’s methodology are zero (Strang & Fix 1973). The fluid 
pressure is the final unknown and is determined from the constraint that  the volume 
of the meniscus remains constant. This procedure yields 2N+ 1 algebraic equations 

R ( x )  = 0 ,  (4.2) 

for the interface shapes and fluid pressure, where x = (xl, x2, .. ., x Z N ,  PF). Since the 
Lagrangian interpolation does not guarantee intra-element continuity of the 
derivatives in the finite-element representation, care must be taken so that second- 
order derivatives do not arise in the weak formulation. The algebraic set (4.2) is 
solved by Newton’s method which starts from an initial guess x(O) and calculates 
successive approximations to t.he solut,ion as 

(4.3) 

where the Jacobian matrix, J, is analytically calculated and is symmetric. 
Furthermore, J is sparse and is composed of a banded part of length 2N and 
bandwidth five, and a final dense row and column due to the volume constraint. The 
efficient routine ARROW, developed by Thomas & Brown (1987) was used for the 
inversion of J. Typically five iterations were sufficient to achieve a solution with error 
less than lo-*. The method was tested for accuracy by varying the number of 
elements. Such variations from 100 to 500 elements resulted in values for the 
bifurcation and limit points that  were different by less than 0.5 YO. Consequently, 250 
elements were used in order to achieve an optimum between numerical error and 
computational cost. 

The numerical procedure closely follows the work of Ungar & Brown (1982) and 
the techniques of Keller (1977) for efficient calculations around limit points, and of 
Abbott (1978) for directly locating limit and bifurcating points with variations in the 
parameters of the problem. For this reason and for brevity, further details have been 
omitted in the present work. 

The stability of a particular shape family to steady perturbations is related 
directly to its location in the bifurcation diagram and its connectivity with the base 
family. According to the theorem of exchange of stability at double points, the 
stability of solution families must change at each limit point and at each bifurcation 
point, and only a t  such points (100s & Joseph 1980). The only requirement is that  the 
base family is known to be stable for some parameter values. Calculations of the 
eigenvalues for a solution family are only necessary when no shapes are known to be 
stable. However, selective calculations of eigenvalues have been carried out and have 
merely confirmed the results of bifurcation theory. The following sections $54.1-4.4 
present numerical results for the unperturbed and perturbed problems, respectively. 
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Bifurcating Finite-element 
shape family Exact value of a calculation 

Pa 0 33742 0.3374 

PS 0.12088 0.1209 

P 0.17684 0.1768 
s 0.15915 0.1591 

PS 0.10822 0.1082 

TABLE 3. Lorations of bifurcation points for t = 0.1 

4.1. Unperturbed annular menisci 
The annular base family is the solution for all aspect ratios and meniscus thicknesses, 
when A P  = A V  = B = 0. This family is stable for large values of the aspect ratio and 
up to the first transcritical bifurcation to a pS family. One of the tests for accuracy 
of the finite-element approximations is performed by comparing the numerical 
results for the first five bifurcation points to the asymptotic rcsults given in $3.1. As 
shown in table 3, the agreement is excellent. 

The families of static shapes evolving from the first five bifurcation points are 
presented in figure 2 for t = 0.1. The slope of the first bifurcating family is 
numerically calculated to be - 0.784 which compares well with the analytical value 
of 1/a(lqo) = -0.781. Therefore, its upper branch continues to lower values of the 
aspect ratio and is stable up to the value a = 0.3017 wherc a limit point arises. 
Subsequently, this branch turns to higher values of aspect ratio and the calculated 
equilibrium shapes become unstable. The lower branch of the same family directly 
develops towards larger values of aspcct ratio and is composed of unstable 
equilibrium shapes. 

Thc next shape families that  bifurcate as a decreases belong to the p and 6 types, 
and they evolve subcritically as predicted by the asymptotic analysis. In  order to 
observe this, an expanded view close to the bifurcation points is shown in figure 3. 
All bifurcating families except for the upper segment of the first one and before the 
limit point are unstablc. Infinite bifurcation points arise and occur closer together as 
the aspect ratio approaches zero. The analytical solutions were carried out up to the 
calculation of the slope of the pS shape families and up to the calculation of 
the curvature of the p and S shape families. They are shown in figures 2 and 3 and the 
finite-clement calculations establish their range of validity. As indicated by the 
dotted lines. linear theory predicts very well the slopes of the pS bifurcating families. 
In addition, for deformed shapes in the p and S families which are characterized by 
e < 0.1 the analytically and numerically obtained bifurcation curves coincide. 

Figure 4 shows the variation of the first three bifurcation points for each type of 
shape family with meniscus thickness. With increasing thickness, both the p and pS 
bifurcation points shift to higher values of the aspect ratio, thus decreasing the range 
of stable shapes. This destabilization of the meniscus is because the larger thickness 
leads to a decrease in the inner radius and makes the inner surface more readily 
susceptible to capillary instability. However, the S bifurcation points remain 
constant as predicted from the asymptotic analysis. This should be expected since 
thc corresponding shapes have only their outer interfaces perturbed which are not 
affected by changes in thickness. The first S bifurcating family arises a t  a = 1/2x and 
is the analogue of the first unstable mode for the break-up of a liquid jet. Indeed, as 
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FIGURE 3. Expanded view of ( a )  the  second and third pLs bifurcation families. and ( b )  the first S 
and p families : ---, unstable solution families ; . . . , asymptotic result ; 0 .  bifurcation points. 

the meniscus thickness increases and reaches 1, the p and pS bifurcation points 
approach asymptotically large values in aspect ratio. However, the 6 bifurcation 
points do not depend on t and are the ones that determine the stability of the liquid 
cylinder a t  the limit oft  = 1.  Thus, the Rayleigh modes are recovered. For the other 
limiting value of the thickness, t + O ,  the values of the ,u and S bifurcation points 
approach each other. Obviously, as the thickness is varied, there exist values of a for 
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FIGURE 5. Meniscus shapes on the first bifurcating family; a = 0.34 is the base solution 
and t = 0.1. 
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FIGURE 6. Meniscus shapes on the subsequently bifurcating families: ( a )  ,u family, a = 0.18; ( b )  6 
family. a = 0.16, (c) swond ,us family. a = 0.12: ( d )  third ,us family. a = 0.11. Only uppwbranch 
shapes are shown for f = 0.1, 

which higher-order bifurcation points arise, whenever the p or ,US loci of bifurcation 
points intersect the 6 ones or each other. Only the first p6 shape family is an 
exception to these observations and does not pair with any other family. 

Figure 5 illustrates the meniscus segments associated with the first bifurcating 
family for t = 0.1 and various values of a. The upper branch of the first p6 family 
resembles inflation. It is this shape with the increased inner radius that renders 
menisci in this family stable. Typical shapes for the second to the fifth families are 
shown in figure 6. The shapes of p and 6 bifurcating families appear sinusoidal in the 
inner and outer interfaces, respectively. The second and third ,US families have both 
the inner and outer interfaces sinusoidal with half the wavelength and more 
deformation of tht. inner and outer interfaces, respectively. This behaviour is 
consistent with the shifting of the loci of the p6 bifurcation points as thickness 
varies. 

4.2. Changes in externally app l id  pressure 
Increasing or decreasing the additional pi essure, A€', applied to the inner interface 
causes the meniscus to inflate or deflate, respectively. This variation in applied 
pressure preserves the character of the reflectively symmetric shape families. 
Therefore, it should provide an easy transition from the slightly deformed annular 
shapes to inflated ones by transforming the transcritical p8 bifurcations to smooth 
curves. Indeed, as shown in figure 7 ( a )  for AP > 0 and in figure 7 ( b )  for AP < 0 a t  
t = 0.1 the p8 bifurcaation points are ruptured. Under inflating conditions two curves 
with finite slope are created close to the first bifurcation point. Under deflating 
conditions the two curves split giving rise to two limit points. The remaining ,US 
families are broken similarly, and in accordance with the prediction of (3 .27 ) .  

The limit points obtained upon breaking the first three p6 shape families for 

in FL41 197 



540 J .  A.  Tsamopoulos, A.  J .  Poslinski and M .  E .  Ryan 

W 

bi -0.10 
4 

0.10 

0.06 

0.02 

-0.02 

1 

Aspect ratio, OL 

FIGURE 7. Broken bifurcation diagram due to  a pressure variations with t = 0.1. ( a )  AP = 0.01. 
(6) AP = -0.01. -, stable solution families; ---, unstable solution families: 0 ,  bifurcation 
points. 

Pressure 
variation 

-0.01 
+0.01 
-0.01 
+0.01 
-0.01 
+0.01 

Asymptotic Numerical Asymptotic Numerical Corresponding 
value value value value bifurcation point 

0.359 0.359 0.316 0.316 0.3374 
No limit points arise 0.3374 

0.122 0.123 0.119 - 0.1209 
No limit points arise 0.108% 

0.109 0.111 0.107 - 0.1082 

No limit points arise 0.1209 

TABLE 4. Limit points created by perturbations in pressure 

t = 0.1 are listed in table 4. The agreement between numerical and asymptotic results 
is very good. However, a t  the higher-order instabilities the bifurcating branches are 
very close to each other and the shapes are highly distorted making the numerical 
detection of the limit points increasingly difficult. 

The region of stable inflated shapes starts again at large a and terminates a t  a limit 
point in a which develops from the limit point of the unbroken curve. This limit point 
shifts to larger aspect ratios as AP increases, see figure 8. The region of stable deflated 
shapes starts similarly from large aspect ratios, but terminates a t  limit points in a 
which are created by the breaking of the bifurcation point. For deflating conditions 
and -0.1 < AP < 0 there is a small range of aspect ratios less than the first critical 
point for which stable shapes are predictcd. They comprise families which are 
disconnected from the other stable deflating families. The evolution of the static 
family branches is clearly shown in figure 8 for varying pressures. 
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Bifurcation point Pressure variation Shifted value 

0.177 +0.1 0.186 
0.177 -0.1 0.168 
0.159 +0.1 0.165 
0.159 -0.1 0.153 

TABLE 5. Shifting of bifurcation points for t = 0 . 1  

Figure 9 shows the regions of stable shapes for inflation and deflation at  various 
values of the meniscus thickness. As thickness increases and applied pressure 
increases or decreases, the range of aspect ratios with stable shapes decreases. Thc 
limit points in the lower branch for t = 0.1 and small A P  are calculated from (3.27),  
and compare well with values calculated numerically. The above-mentioned 
additional stable shapes under deflating conditions appear in this figure as islands 
separated from the rest of the stable region. The meniscus shapes associated with the 
broken branches are similar to the corresponding unperturbed branch. The ,u and S 
bifurcation points do not break with variation of pressure owing to the reflectively 
antisymmetric shapes in the emanating families. Table 5 shows that they both shift 
to higher values of the aspect ratio with increasing A€', and that the numerical rcwlts 
are identical to the asymptotic ones predicted from (3.34) to the reported awuracy. 

4.3. Changes in rnPntscus volume 
Variations in the liquid volume preserve the character of the reflectively symmetric 
shape families also. Therefore. only the bifurcation points between what were the 
annular and ,US shape families break to create limit points. Decreases in volume draw 
the fluidlgas interfaces towards each other ; whereas volume increases push these 
interfaces apart. Figures 10 ( a )  and 10 ( b )  show the modified bifurcation diagram for 
t = 0.1 for volume increase and decrease, respectively. When A V  > 0 the first 
bifurcation point splits, giving rise to two limit points. These newly created limit 
points move rapidly away from each other as the volume increases because of 
the predicted quadratic dependence of A V  on cz close to these limit points. When 
A V  < 0 two curves with finite slope exist around the limit point. The same two 
possibilities arise in the other ,US bifurcation points. In  general, increases in volume 
produce qualitatively similar results to decreases in pressure and vice versa. The 
physical reason behind this result is that volume increases or pressure decreases lead 
to a decrease of the inner radius of the annulus, therefore, they make i t  more readily 
susceptible to capillary-driven instabilities. 

The limit points obtained upon breaking the first three ,US families for t = 0.1 are 
listed in table 6 and show excellent agreement between the asymptotic predictions 
and numerical calculations. The region of stable shapes, having slightly larger or 
smaller volume than the volume of the annular shape. spans from large aspect ratios 
down to a limit point that depends on the thickness and volume variations. Again, 
for 0 < A V  < 0.2 there is a small range of aspect ratios less than the first bifurcation 
point for which stable shapes are predicted. 

Figure 11 indicates the limits of achievable static shapes given the thickness and 
volume of the meniscus. If the volume deviates from the annulus or the thickness 
increases, the stable operation limits decrease The disconnected stable families 
appear again as isolated islands. I n  addition, stable shapes with volume decreases are 
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FIGURE 10. Broken bifurcation diagram due to  meniscus volume variations with t = 0.1. 
( a )  A V  = 0.01. (b )  A V  = -0.01; -, stable solution families: ---. unstable solution families; 
0 ,  bifurcation points. 

0.6 

0.5 

0.3 

I 
I 
I 
I 

Unstable 

I I 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 
Volume increase, AV 

FIGURE 11. Stable and unstable operating regions for various meniscus volumes with the meniscus 
thickness as a parameter. The dot.ted line represents volume decreases t.hat result in touching 
interfaces. 
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Volume 
variation 

0.01 
-0.01 

0.01 
-0.01 

0.01 
-0.01 

Asymptotic Numerical Asymptotic 
value value value 

0.340 0.344 0.342 
Bo limit points arise 

0 122 0.123 0.120 
No limit points arise 
S o  limit points arise 

0.109 0.1 10 0.107 

Numerical ('orresponding 
value bifurcation point 

0.332 0.3374 
0.3374 
0.1209 
0 1209 
0.1082 
0.1082 

- 

- 

TABLE 6. Limit points created by perturbations in volume 

Bifurcation point Volume variation Shifted value 

0.177 
0.177 
0.159 
0.159 

+0.1 
-0.1 
+0.1 
-0.1 

0.181 
0.173 
0.154 
0.164 

TABLE 7. Shifting of bifurcation points for t = 0.1 

limited by the dotted curve signifying that the inner and outer interfaces touch cach 
other. 

Table 7 shows that the unbroken bifurcation points shift towards each other when 
volume decreases, whereas they shift away from each other when volume increases 
in accordance with the predictions of (3.34) and table 2. Typical fluid menisci with 
a decrease or increase in fluid volume are shown in figures 12(a) and 12(b), 
respectively. 

4.4. Changes in gravitational Bond number 
The gravitational force pulls the meniscus towards the z = 0 plane. Figure 13 shows 
the perturbed bifurcation diagram with t = 0.1 and a positive gravitational Bond 
number, B = 0.01. The qualitative behaviour was predicted by the asymptotic 
analysis in $3.2. The reflectively antisymmetric shape families are broken whereas 
the reflectively symmetric remain unbroken and the corresponding bifurcation 
points are unshifted. A slight change of the first bifurcation point from do) = 0.337 
to 0.338 is attributed to the translation of the base families as gravity increases from 
zero. In particular, the first bifurcating shape family is unaffected by changes in 
B. 

Table 8 lists the limit points created by breaking the p and 8 bifurcation points. 
The asymptotic and numerical values are identical up to three digits of accuracy. 
Since the first bifurcation point is not broken when gravity increases from zero, thc 
static shapes lose stability at  the limit point on the upper branch of this bifurcating 
family. 

Finally, several numerical simulations have been performed by simultaneously 
varying two or more of the parameters. For example, figure 12(c) shows a stable 
meniscus shape a t  B = 0.5 and A P  = A V  = 0 and figure 12(d )  shows a stable 
meniscus shape obtained at A€' = 0.4, A V  = 0.2, B = 0.5, both at t = 0.1 and c1 = 0.5. 
The results are consistent with the previous discussion. Finally, figure 14 indicates 
the range of values of CI for which stable shapes can be achieved for various 
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FIGURE 12. Meniscus shapes with a = 0.5, t = 0.1 and varying parameters: ( a )  AV = -0.1, B = 
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FIGURE 13. Broken bifureation diagram due to gravitational force with t = 0.1 and B = 0.01 : 
-~ , stable solution families ; ---, unstable solution families ; 0.  bifurcation points. 
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Corresponding 
Gravity variation Limit point bifurcation point 

0.01 0.180 0.177 
0.01 0.163 0.159 

TABLE 8. Timit points creat’ed by perturbations in gravity 
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FIQVKE 14. Stable and unstable operating regions for various values of the gravitatioiial Bond 
number with the meniscus thickness as a parameter 

thickncsses. The dotted line represents the locus of the limit points in the upper 
branch of the first pS bifurcating family. For values of the Bond number to the right 
of the solid lines the two interfaces touch each other. 

5. Concluding remarks 
A detailed picture of shape and stability of annular menisci subject to various 

external disturbances has been presented. These menisci are stable when their 
aspcct ratio is between certain values that depend on their thickness. volume, 
external pressure and gravitational Bond number. Effects from each of the 
parameters separately h a m  been examined using both asymptotic analysis and 
numerical simulation, with gratifying agreement. In particular, the asymptotic 
analysis presented in $ 3  is very useful in determining whether imperfections due to 
external parameters break or shift the bifurcation points. Extension of this 
methodology in order to examine simultaneous variations of several parameters is 
straightforward, and it may provide the limits of operation under these circumstances 
also. 

The unperturbed annular mcnisci become unstable owing to a transcritical 



Equilibrium shapes and stability of captive annular mmisc i  547 

bifurcation to reflectively symmetric shapes. Unstable modes resembling the ones 
that exist in the break-up of liquid jets arise for even smaller values of the aspect 
ratio and from subcritical families. Consequently, Rayleigh’s (1979) analysis is not 
directly applicable for the present configuration. Furthermore, the dynamic 
behaviour of the menisci close to the first neutrally stable curve will closely resemblc 
that of an electric drop close to the first critical point (Tsamopoulos et al. 1985). As 
was the case with the cylindrical jet, the instability is induced by surface tension 
forces. These forces become increasingly important as the radius of the inner surface 
becomes smaller. 

All these results are valid when the axis of symmetry of the meniscus is vertical 
and the contact lines between the meniscus and the confining solid surfaces are fixed. 
circular and concentric. When, for example, owing to design requirements. the 
meniscus is tilted with respect to gravity or the two solid surfaces are misaligned, 
non-axisymmetric stable shapes will arise. All azimuthal asymmetries break the non- 
axisymmetric shape families. As noted in 94 a bifurcation point breaks only when 
imperfections develop that preserve the symmetry of the previously connected shape 
families. 

One of the authors, J .A.T. ,  was partially supported by the Fluid Mechanics 
Program of the National Science Foundation. 

These inhomogeneous terms a t  third order are 
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Appendix B 
The coefficients 10,11,12 in equation (3 .25)  are 

1, = 663(2P1-~u), 1, = 63(62y,+y2)-2(53P1+P2) 
2 4 3  I2 = -46 (6 PI --Pi) +St;'/?;([+ 5 P )  -&Pi( 1 + 5 P )  - 6t4P,([+ 38') 

+ 6P2( 1 + 36') + 36(t4 - 1) + 9S3(t3 - 1) 

For the ,u bifurcating family the expression I,, I, and I5 in equation (3.31) arc 
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